逻辑符号

编辑:见识网互动百科 时间:2019-11-30 07:07:50
编辑 锁定
在逻辑中,经常使用一组符号来表达逻辑结构。
中文名
逻辑符号
表    达
经常使用一组符号来表达逻辑结构
使用者
逻辑学家
注    意
不同的符号有相同的意义

逻辑符号意义

编辑
在逻辑中,经常使用一组符号来表达逻辑结构。因为逻辑学家非常熟悉这些符号,他们在使用的时候没有解释它们。所以,给学逻辑的人的下列表格,列出了最常用的符号、它们的名字、读法和有关的数学领域。此外,第三列包含非正式定义,第四列给出简短的例子。
要注意,在一些情况下,不同的符号有相同的意义,而同一个符号,依赖于上下文,有不同的意义。

逻辑符号基本符号查看

编辑
以下为基本逻辑符号[1] 
符号名字解说例子读作范畴

  
实质蕴涵
  
A ⇒ B 意味着如果 A 为真,则 B 也为真;如果 A 为假,则对 B 没有任何影响。
  
x = 2 ⇒ x² = 4 为真,但 x² = 4 ⇒ x = 2 一般为假(因为 x 可以是 −2)。
蕴涵;如果.. 那么
命题逻辑

  
可能意味着同 ⇒ 一样的意思(这个符号也可以指示函数的域和陪域;参见数学符号表)。
  

  
可能意味着同 ⇒ 一样的意思(这个符号也可以指示超集)。
  

  
实质等价A ⇔ B 意味着 A 为真如果 B 为真,和 A 为假如果 B 为假。x + 5 = y +2 ⇔ x + 3 = y当且仅当;iff

  
¬逻辑否定陈述 ¬A 为真,当且仅当 A 为假。¬(¬A) ⇔ A
~
  
命题逻辑
穿过其他算符的斜线同于在它前面
放置的"¬"。
x ≠ y ⇔ ¬(x =~y)

  
逻辑合取
  
如果 A 与 B 二者都为真,则陈述 A ∧ B 为真;否则为假。n < 4 ∧ n >2 ⇔ n = 3(当 n 是自 然数的时候)。

  
逻辑析取
  
如果 A 或 B 或二者均为真陈述,则 A ∨ B 为真;如果二者都为假,则 陈述为假。n ≣ 4 ∨ n ≢ 2 ⇔ n ≠ 3(当 n 是 自然数的时候)。

  
xor陈述 A ⊕ B 为真,在要么 A 要么 B 但不是二者为真的时候为真。A ⊻ B 意思相同。(¬A) ⊕ A 总是真,A ⊕ A 总是假。异或命题逻辑, 布尔代数
全称量词∀ x: P(x) 意味着所有的 x 都使 P(x) 都为真。∀ n ∈ N(n² ≣ n).对于所有; 对于任何;对于每个;任意的谓词逻辑
存在量词∃ x: P(x) 意味着有至少一个 x 使 P(x) 为真。∃ n ∈ N(n 是偶数)。存在着
∃!
唯一量词
∃! x: P(x) 意味着精确的有一个 x 使 P(x) 为真。∃! n ∈ N(n + 5 = 2n).精确的存在一个
:=定义x := y 或 x ≡ y 意味着 x 被定义为 y 的另一个名字(但要注意 ≡ 也可以意味着其他东西,比如全等)。cosh x := (1/2)(exp x + exp (−x))被定义为所有地方
  
:⇔P :⇔ Q 意味着 P 被定义为逻辑等价于 Q。A XOR B :⇔ (A ∨ B) ∧ ¬(A ∧ B)
()优先组合优先进行括号内的运算。(8/4)/2 = 2/2 = 1, 而 8/(4/2) = 8/2 = 4。
推论x ├ y 意味着 y 推导自 x。A → B ├ ¬B → ¬A推论或推导命题逻辑, 谓词逻辑
参考资料
词条标签:
理学